Yuxin (Shirley) Li

+86 18982209313 | +852 66428808 | e@yuxin.li | yling@connect.ust.hk | www.yuxin.li

EDUCATION BACKGROUND

The Hong Kong University of Science and Technology

2022-2026 (expected)

Bachelor of Engineering in Computer Science

University of California, Berkeley

2023

Summer Session - CS61BL Data Structures & Programming Methodology

RESEARCH PROJECTS

* Denotes equal contribution

MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving

2025

[ICML 2025] Ruida Wang*, Rui Pan*, Yuxin Li*, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, Tong Zhang

- This paper introduces MA-LoT, a comprehensive model-collaboration framework to balance NL reasoning and FL verification under the Long CoT paradigm for Lean4 theorem proving, allowing the model to generate in-depth formal reasoning through NL planning and analysis.

 Developed LoT-TL, a training-inference pipeline that makes field-specific Long CoT capabilities emerge to LLMs without requiring explicitly annotated datasets.
- The framework achieves a 61.07% accuracy rate on the Lean4 version of the MiniF2F-Test dataset, outperforming DeepSeek-V3 (33.61%), Goedel-Prover (58.20%, SOTA for whole-proof generation) and Intern-LM-2.5-StepProver (50.70%, SOTA tree-search method).
- Engaged in initial idea discussion, implemented the significant parts of the codebase and served as one of the primary manuscript authors.

Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability

2025

[EMNLP 2025 under review] Ruida Wang*, Yuxin Li*, Yi R.(May) Fung, Tong Zhang

- This paper introduces an end-to-end framework that augments natural-language mathematical reasoning with formal-language verification. Designed NL-FL Problem Alignment to reformulate NL QA tasks as FL existence theorems, enabling direct interaction with a formal prover. Developed a Mixed Problem Input mechanism allowing the formal agent to solve QA and existence problems concurrently.
- The framework achieves 89.80% and 84.34% accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively; solved several problems unreachable by the NL baseline even with more trials.

Explore Selective Disclosure Bias with Networks of LLM-based Agents

2024

Research Assistant (Supervised by Professor Yongren Shi, The University of Arizona)

- Developed a simulation to study how selective disclosure bias affects opinion segregation.
- Built simulation environments to model how LLM-based agents form and update opinions under selective information sharing.
- Designed experiments to examine the effects of disclosure patterns on opinion clustering and polarization in agent networks.

Knowledge Discovery over Machine Learning

2023

Undergraduate Research Assistant (Supervised by Professor Minhao Cheng, The Pennsylvania State University)

• Conducted in-depth analysis to translate mathematical concepts and practical machine learning algorithms and model behaviours.

SKILLS & CAPABILITIES

Technical skills: Python, C++, Java, Scala, RISC-V, LaTeX.

Selected courses:

Math: Multivariable Calculus, Linear Algebra, Applied Statistics, Probability, Discrete Mathematical Tools.

Computer science: Machine Learning, Large-Scale Machine Learning for Foundation Models, Design and Analysis of Algorithms.

Applied math & CS: Actuarial Mathematics, Electro-Robot Design, Electronic and Information Technology.

OTHER ITEMS

- Peer Mentor, Computer Science and Engineering Department, The Hong Kong University of Science and Technology, 2025.
- Deep Learning Certification, NVIDIA Deep Learning Institute 2024
- Member, China Entrepreneur Network, The Hong Kong University of Science and Technology, 2022-2023.